

Jeremy Bracone, John Brock, Amar Nayegandhi 2006 ESRI User Conference August 10, 2006

Topics

Previous studies relating to park management.

- Current study Topographic Complexity
 - Description of Methods
 - Accuracy and Usefulness
 - Questions and Future Goals

- Develop methods for extracting geomorphologic features from data
 - Detect and quantify dune formation and migration
 - Shoreline mapping and monitoring
 - Map shoreward edge of vegetation

- Develop methods for extracting geomorphologic features from data
 - Detect and quantify dune formation and migration
 - Shoreline mapping and monitoring
 - Map shoreward edge of vegetation

Dune Inventory and Monitoring

- Features and Attributes associated with each dune:
 - Date of 1st Recognition
 - Unique Dune ID
 - Dune-Only DEM
 - Base Elevation
 - Basal Polygon
 - Dune Area CentroidLocation
 - Total Dune Area
 - Total Dune Volume

- Develop methods for extracting geomorphologic features from data
 - Detect and quantify dune formation and migration
 - Shoreline mapping and monitoring
 - Map shoreward edge of vegetation

- Develop methods for extracting geomorphologic features from data
 - Detect and quantify dune formation and migration
 - Shoreline mapping and monitoring
 - Map shoreward edge of vegetation

- Develop methods for extracting geomorphologic features from data
 - Detect and quantify dune formation and migration
 - Shoreline mapping and monitoring
 - Map shoreward edge of vegetation

- Develop methods for extracting geomorphologic features from data
 - Detect and quantify dune formation and migration
 - Shoreline mapping and monitoring
 - Map shoreward edge of vegetation

Determining Topographic Complexity

- Rugosity Surface Roughness + Vertical Relief
- *Important factor for assessing the complexity of coral reef habitats.
- Rugosity is significant factor in controlling species diversity and distribution

Determining Topographic Complexity

- Measured in field by divers draping a chain along a transect.
 - Length of Chain / Linear Distance = Rugosity

- Grayscale Satellite Imagery
 - Light intensity is analyzed to derive rugosity

Creation of synoptic topographic complexity (rugosity) maps based on airborne lidar surveys

Problems

- Current Rugosity algorithm heavily biased towards areas with high slope.
- Makes distinguishing between a rough slope and a smooth slope impossible
- Rugosity calculations for steep fringing reefs will primarily reflect slope.

Surface Complexity

- Surface Complexity (or roughness) differs from Rugosity
- Examines the roughness of the surface after compensating for topographic relief
- Unit change to percent:
 - Percent more complex than a flat surface

Gridded Map Distance (d)

Same

Gridded Map Distance (d)

Methods

Surface Complexity
% complexity
-1.000 - -0.500
-0.499 - 0.000

0.001 - 0.550 0.551 - 0.600 0.601 - 0.630 0.631 - 0.660

0.661 - 0.690 0.691 - 0.700 0.701 - 0.730 0.731 - 0.760 0.761 - 0.800

0.761 - 0.800 0.801 - 0.850 0.851 - 0.900 0.901 - 0.950 0.951 - 1.000 1.001 - 1.500 1.501 - 3.000 3.001 - 5.000

5.001 - 7.000 7.001 - 9.000 9.001 - 20.000 20.001 - 50.000 50.001 - 70.000 70.001 - 90.000 90.001 - 200.000 200.001 - 300.000 Modeled with 10x Vertical Exaggeration

Current Studies Utilizing Rugosity

- Study of the development of the FL Keys.
 - Hypothesis:
 - Rugosity increases southeastward towards older reef structures due to reef decay
 - Can be used as an indicator for reef maturity
- Utilizing Rugosity as an indicator of species diversity.

Future Inquiries into New Algorithm

How do different surface complexity values relate to habitat?

- State Is there a relationship between surface complexity value and substrate?
- SIs a smaller kernel size more useful for surface and substrate relationships?

Acknowledgements

- *NASA Wallops Flight Facility Wallops Island, VA
- U.S. Geological Survey
 Center for Coastal and Watershed Studies, FL
- * National Park Service
 - Southeast / Caribbean Network
 - Northeast Network
 - Gulf Islands Network

Integrated Remote Sensing and Modeling Group Website:

http://coastal.er.usgs.gov/remote-sensing/